منابع مشابه
Support Vector Regression Machines
A new regression technique based on Vapnik’s concept of support vectors is introduced. We compare support vector regression (SVR) with a committee regression technique (bagging) based on regression trees and ridge regression done in feature space. On the basis of these experiments, it is expected that SVR will have advantages in high dimensionality space because SVR optimization does not depend...
متن کاملFuzzy support vector machines
A support vector machine (SVM) learns the decision surface from two distinct classes of the input points. In many applications, each input point may not be fully assigned to one of these two classes. In this paper, we apply a fuzzy membership to each input point and reformulate the SVMs such that different input points can make different contributions to the learning of decision surface. We cal...
متن کاملProbability Fuzzy Support Vector Machines
In this paper, a model of probability fuzzy support vector machines (PFSVMs) based on the consideration both for fuzzy clustering and probability distributions is proposed. In many applications of traditional support vector machines (SVMs), there are over-fitting problems due to the fact that SVM is sensitive to outliers or noises. In order to solve the problem, the fuzzy support vector machine...
متن کاملProperties of Support Vector Machines for Regression Properties of Support Vector Machines for Regression
In this report we show that the-tube size in Support Vector Machine (SVM) for regression is 2= p 1 + jjwjj 2. By using this result we show that, in the case all the data points are inside the-tube, minimizing jjwjj 2 in SVM for regression is equivalent to maximizing the distance between the approximating hyperplane and the farest points in the training set. Moreover, in the most general setting...
متن کاملClassiication Properties of Support Vector Machines for Regression Classiication Properties of Support Vector Machines for Regression
In this report we show some consequences of the work done by Pontil et al. in 1]. In particular we show that in the same hypotheses of the theorem proved in their paper, the optimal approximating hyperplane f R found by SVM regression classiies the data. This means that y i f R (x i) > 0 for points which live externally to the margin between the two classes or points which live internally to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fuzzy Sets and Systems
سال: 2003
ISSN: 0165-0114
DOI: 10.1016/s0165-0114(02)00514-6